Last Updated on May 15, 2024 by GeeksGod
Course : Complete 5+ Machine Learning Projects From Scratch
Course Title: Real World 5+ Deep Learning Projects Complete Course Using Roboflow and Google Colab
Course Description:
Welcome to the immersive “Learn Facial Recognition And Emotion Detection Using YOLOv7: Course Using Roboflow and Google Colab.” In this comprehensive course, you will embark on a journey to master two cutting-edge applications of computer vision: facial recognition and emotion detection. Utilizing the powerful YOLOv7 algorithm and leveraging the capabilities of Roboflow for efficient dataset management, along with Google Colab for cloud-based model training, you will gain hands-on experience in implementing these technologies in real-world scenarios.
What You Will Learn:
Introduction to Facial Recognition and Emotion Detection:Understand the significance of facial recognition and emotion detection in computer vision applications and their real-world use cases.Setting Up the Project Environment:Learn how to set up the project environment, including the installation of necessary tools and libraries for implementing YOLOv7 for facial recognition and emotion detection.Data Collection and Preprocessing:Explore the process of collecting and preprocessing datasets for both facial recognition and emotion detection, ensuring the data is optimized for training a YOLOv7 model.Annotation of Facial Images and Emotion Labels:Dive into the annotation process, marking facial features on images for recognition and labeling emotions for detection. Train YOLOv7 models for accurate and robust performance.Integration with Roboflow:Understand how to integrate Roboflow into the project workflow, leveraging its features for efficient dataset management, augmentation, and optimization for both facial recognition and emotion detection.Training YOLOv7 Models:Explore the end-to-end training workflow of YOLOv7 using the annotated and preprocessed datasets, adjusting parameters, and monitoring model performance for both applications.Model Evaluation and Fine-Tuning:Learn techniques for evaluating the trained models, fine-tuning parameters for optimal performance, and ensuring robust facial recognition and emotion detection.Deployment of the Models:Understand how to deploy the trained YOLOv7 models for real-world applications, making them ready for integration into diverse scenarios such as security systems or human-computer interaction.Ethical Considerations in Computer Vision:Engage in discussions about ethical considerations in computer vision, focusing on privacy, consent, and responsible use of biometric data in facial recognition and emotion detection.